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The primary phase of electronic prognostic uncertainty quantification included the identification and quantifica-
tion of uncertainty sources through utilizing sensitivity analysis method. An improved EFAST-based sensitivity
analysis method that considered the possibility of parameter fluctuation was used to identify the key factors
(KFS) of uncertainty sources. Also, an envelope probability method was adopted to further quantify the key fac-
tors of parameter distribution. Finally, a board-level electronic productwas chosen as the study case of this paper.
Comparing the result of uncertainty quantification, sensitivity analysis was used to drive the result of the single-
dimensional method. It was obvious that the sensitivity analysis method used in this paper has optimized the
input parameters of the model and improved the accuracy of electronic prognostic uncertainty quantification.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The uncertainties in the process of prognostic could affect the appli-
cability of prognosticsmethods and the credibility of prognostics results
[1]. Therefore, various approaches had been proposed to analyse and
quantify the uncertainty during the prediction process. Uncertainty
quantification is a process of depicting, estimating and analysing many
uncertain factors in the system [2]. The identification and quantification
of uncertainty sources were an initial and important stage of uncertain-
ty quantification, since the model inputs were generated by them. Sen-
sitivity analysis, as an effective method could be used in the initial stage
of uncertainty quantification. Thus, the input parameters of the model
could be optimized by sensitivity analysis [3]. In this analysis, the uncer-
tainty of model output was allocated to the key factors selected from
different input parameters (KFS, which caused the output uncertainty
of the model) [4].

The identification and quantification of uncertainty sources had
been studied in several papers. Ba-Ngu Vo et al. [5] adopted a sequen-
tial Monte Carlo method to obtain the prediction result with higher ac-
curacy. Sankararaman et al. [6] explained the application of Bayesian
network approach in uncertainty problems. The sensitivity analysis
had already been widely applied in uncertainty quantification. Helton
yang@buaa.edu.cn (W. Pan),
(K.-C. Yung).
et al. [7] proposed an uncertainty quantification method combined
with sensitivity analysis. Andre [8] held that the sensitivity analysis,
similar as uncertainty analysis, could reveal or find the causes of out-
put uncertainty. The sensitivity analysis was employed to find the con-
tribution of each input parameter to the changes of system output in a
number of researches [9,10]. Helton and Davis [11] summarized the
expressions of various input sensitivity parameters and calculation
methods.

As a global sensitivity method proposed by Saltelli et al. [12], the
EFAST (Extended Fourier Amplitude Sensitivity Test) is of high preci-
sion. However, the probability of parameter fluctuation had not been
taken account in this method for the identification of uncertainty
sources. Though Hammonds et al. [13] figured out the distribution
types which different uncertainty parameters followed, there was still
uncertainty in distribution parameters. A method based on envelope-
probability was proposed by Ferson and Troy Tucker, aiming to remove
both the random uncertainty and the cognitive uncertainty [14]. The
cognitive uncertainty was denoted as the distribution types and param-
eters. However, therewere still some problems in theprevious research.
The possibility of weighing parameters in sensitivity analysis had not
been considered, and the parameters in the distribution followed by
KFS had not been defined clearly.

In this paper, an enhanced sensitivity analysis approachwasproposed
to improve the accuracy of themodel input. Through combining the fluc-
tuation percentage of uncertainty quantification and the probability of
parameter fluctuation, the EFAST method was adopted to identify KFS
in the identification of uncertainty sources. The envelope-probability
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Fig. 1. Uncertainty propagation in RUL prognostics.
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method is also used to obtain the probability distribution of KFS, which
achieved pre-defined accuracy. Simulations of a board-level electronic
product (contains 49 kinds of device type, 161 components) was con-
ducted to validate the effectiveness of such a hybrid approach in compar-
ison with the original method. The results of the simulation showed that
such enhanced sensitivity analysis had obviously improved the accuracy
of uncertainty quantification.

2. RUL prognostic and uncertainty propagation

For the electronic products, physics-of-failure (PoF)-based methods
was shown to be effective for prognostic [15]. The uncertainty propa-
gation in the process of electronic prognostics can be described as
Fig. 1.

p= {p1,p2⋯pn} in Fig. 1 refers to the physical dimension like length,
width, height and so on. m = {m1,m2⋯mn} is the material properties
such as Poisson's ratio and Young'smodulus. s={s1,s2⋯sn} is the service
load like the voltage or current caused by the operation of the product
itself. And e = {e1,e2⋯en} refers to the external load, such as tempera-
ture and vibration.

Nf ¼ f p;m; s; e; cð Þ ð1Þ

The accumulated damage percentage Dtotal can be expressed as
follows:

Dtotal ¼
Xk
i¼1

Di ¼
Xk
i¼1

ni

Ni
: ð2Þ

The failure criterion is θ.

Dtotal≤Dθ ð3Þ
Table 1
The weight of parameters.

Weight (k) Meaning

1 More likely to happen
0.5 Likely to happen
0 Not likely to happen
Through the output of uncertainty propagation Nf, the remaining
useful lifetime (RUL) can be calculated as follows:

RUL ¼ N f

Dtotal
−Nf : ð4Þ

The uncertainty parameters are p′, m′, s′, e′, c′, and θ′. The outputs
value with uncertainty, RUL′ can be described as a series of statistical
eigenvalues by uncertainty propagation.

3. Sensitivity analysis approach

3.1. Sensitivity analysis of uncertainty source identification

3.1.1. Joint parameter impact
Since a single parameter fluctuationwill be affected by other param-

eters, the impacts were reflected in the process of EFAST based the
sensitivity analysis method. If the model is y = f(x), where the input
is x= (x1, x2 … xn), y is the output value. The model with total fluctua-
tion percentage F(y) can be decomposed as follows:

F yð Þ ¼
X

i
Fi þ

X
i≠ j

Fi j þ
X

i≠ j≠m
Fi jm þ F12…k ð5Þ

where i, j, andm are corresponding to the serial number of different KFS
and range from 1 to k. Fi is the fluctuation percentage of the results for a
single changed factor. Themulti-fluctuation percentage Fij generated by
xi, xj to the final results y can be calculated as follows:

Fi j ¼ Fi � F j−Fi−F j

��� ���: ð6Þ

3.1.2. Possibility of parameter uncertainty
The possibility of parameter uncertainty was introduced to the

sensitivity analysis as the probability of each parameter fluctuation is
different. Theweight of each parameter in sensitivity analysis is defined
in Table 1.
Table 2
Distribution type of parameters.

p′ ~ Triangle s′ ~ Normal θ′ ~ Normal
m′ ~ Triangle e′ ~ Normal c′ ~ Uniform



Fig. 2. The strain test board.
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The comprehensive weight of multiple factors can be shown as
follows:

ki j ¼ ki � kj ð7Þ

where i and j refer to different KFS and range from 1 to k.

3.1.3. Parameter sorting
The sensitivity index is S. The first-order sensitivity index of xi is Si,

combing with k, which can be defined as follows:

Si ¼
ki � Fi
F

: ð8Þ

Similarly, the parameter sensitivity index of the 2nd-order and the
3rd-order can be defined as follows:

Si j ¼
ki j � Fi j

F
; Si jm ¼ ki jm � Fi jm

F
: ð9Þ

The influence between parameters can be described as STi
which is

the amount of each order index.

STi
¼ Si þ Si j þ Si jm þ⋯þ S12⋯i⋯k ð10Þ

where the total sensitivity index of xi is STi ; the 1st order to the k-order
sensitivity index of xi is Si to S12 ⋯ i ⋯ k.

3.2. Sensitivity analysis of uncertainty source quantification

3.2.1. Distribution of parameters
All the parameters by the rules were proposed in the literature [13].

The distribution type that Xi = {p′,m′, s′, e′, c′, θ′} followed is shown in
Table 2.
Table 3
External load conditions.

Load conditions Value

Temperature range −45 °C to 125 °C
High/low temperature dwell time 10 min
The rate of temperature variation 15 °C/min
Time of a cycle 42.6 min
The frequency of the cycle 10 cycles
3.2.2. Sensitivity analysis of distribution parameters
If more than two probability envelope areas are calculated, the

other uncertainty factors will all follow the given envelope-probability
[14]:

Δsi ¼ area Bð Þ−area Tið Þð Þ=area Bð Þ � 100% ð11Þ

where area(B) is the probability envelope area of the output ywhen the
uncertainty of distribution parameters have not been removed; area(Ti)
is the uncertainty part of distribution parameters di;Δsi is the sensitivity
index of distribution parameter xi. The step of the envelope-probability-
based method is in detail can be described as follows:

Step 1: Describing all the KFS by the probability envelope and then
calculating the total probability envelope area(B).

Step 2: Extracting 3 ~ 5 groups (depends on the demanded accuracy) of
distribution parameters in the range of selected factors to
describe ten precision distributions of selected factors. When
the selected factors followed different precision distribution
and other uncertainty factors are in the given probability en-
velope (same as Step 1),the total area(Ti) can be calculated
corresponding to each group of the parameters.

Step 3: Using Eq. (11) to calculate theΔsi of each distribution parameter.
Fig. 3. Ambient temperature load profile.



Table 4
Sensitivity analysis of the solder joint thermal fatigue.

Parameters Average k Range ST New (origin) ranking

εf 0.325 1 42.77% 0.1751 2 (4)
c 0.6 0.5 13.24% 0.0818 4 (5)
A 0.15 0 116% 0 5 (1)
h 0.5 1 84.5% 0.2159 1 (2)
LD 7.14 0.5 71.7% 0.1256 3 (3)

Table 5
Sensitivity analysis of the PTH.

Parameters Average k Range ST New (origin) ranking

R 0.3 0.5 85.43% 0.0824 4 (2)
l 0.5 1 70.02% 0.1594 2 (3)
t 0.25 1 98.56% 0.1923 1 (1)
ECu 1300 0.5 12.35% 0.1107 3 (4)
Df 0.6 0 11.63% 0 5 (5)

Table 6
Sensitivity analysis of the electro migration.

Parameters Average k Range ST New (origin) ranking

j 3.25 1 42.77% 0.1745 3 (3)
c −0.6 0.5 13.24% 0.1291 4 (5)
A 0.25 0 29.9% 0 5 (4)
W 0.1 0.5 117.3% 0.2154 2 (1)
d 0.6 1 116.5% 0.2845 1 (2)

Fig. 5. The effects of different quantity of KFS.
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4. Case study

4.1. Case description

A two-channel static strain test boards was selected as a typical case
in this paper. The board contained 49 kinds of devices and 161 compo-
nents in total which is shown in Fig. 2.

4.2. Prognostic model

The failure of the mechanism model was caused by those compo-
nents as mentioned above: solder thermal fatigue model [16] (Coffin–
Fig. 4. The results of the two se
Manson), plated-through-hole thermal fatigue model [17] (PTH) and
electro-migration model [18] (Black). The predictive linear cumulative
damage models [19] and failure mechanism competition model [20]
should be concluded in the whole process.

4.3. Loading conditions

The external loads that this case suffered in the process of the simu-
lation are shown in Table 3, and the ambient temperature load profile is
defined in Fig. 3.

The case had been under the conditions of present experiment for
50 days before the fault prediction began.

4.4. Sensitivity analysis

4.4.1. Identification of uncertainty sources
According to Eqs. (5)–(10), the KFS can be identified from the uncer-

tainty sources through the improved EFAST-based sensitivity analysis.
nsitivity analysis method.



Table 7
Distribution type and range of the parameters.

Parameters Range of the parameters

εf ~ N u ~ [0.28, 0.35] σ2 = 0.25
ECu ~ N u ~ [1100, 1500] σ2 = 450
d ~ N u ~ [0.5, 0.7] σ2 = 0.6
LD ~ U Lb ~ [0.62, 0.7] Ub ~ [0.72, 0.8]
t ~ U Lb ~ [0.1, 0.2] Ub ~ [0.3, 0.4]
l ~ U Lb ~ [0.3, 0.5] Ub ~ [0.6, 0.8]
W ~ U Lb ~ [0.05, 0.08] Ub ~ [0.12, 0.14]
h ~ T Lb ~ [0.3, 0.6] M ~ [0.5, 0.8] Ub ~ [0.8, 1.0]
j ~ T Lb ~ [2.4, 2.8] M ~ [3.2, 3.6] Ub ~ [3.5, 4.0]

Table 8
The values of the KFS.

εf LD

u = 0.28 σ2 = 0.25 Lb = 0.62 Ub = 0.72
u = 0.32 σ2 = 0.25 Lb = 0.66 Ub = 0.76
u = 0.35 σ2 = 0.25 Lb = 0.70 Ub = 0.80

h

Lb = 0.3 M = 0.5 Ub = 0.8
Lb = 0.45 M = 0.65 Ub = 0.9
Lb = 0.6 M = 0.8 Ub = 1.0
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It can be seen from Tables 4–6 that the influence between parame-
ters and the weight of parameters could significantly affect the ranking
results. A parameter will absolutely rank the last if the weight of this
parameter is 0.
4.4.2. Sensitivity analysis used in uncertainty source identification
Comparing the uncertainty results which used the existing sensitiv-

ity analysis method, the uncertainty results utilized the EFAST-based
sensitivity analysis method.

It is shown in Fig. 4. Both the mean and the variance of current
method were smaller than the original method. The mean of the
EFAST-based method was closer to the mean of simulation result, and
the variance decreasing means implies that the result was more stable.
Fig. 6. The envelope-proba
The top two/four/all KFSwere selected as themodel inputs according to
Table 2. The result is shown in Fig. 5.

It can be seen from Figs. 4 and 5:

1) The number of chosen KFS grows and the variance of the Nf proba-
bility distribution is larger.

2) The difference between four KFS results and two KFS results is
much smaller than the difference between four KFS results and all
KFS results.

3) Increasing the number of KFS in a confidence interval without a sig-
nificant increase of variance, the result is much closer to the reality.
However, as the number of KFS has overcome some confidence in-
tervals, the variance will increase significantly.

In real practices, the number of KFS is not the more the better. The
advice is to choose the top 60% to 80% parameters and give up the
other 20% to 40% parameters with low ranking. On the precondition of
precision, it enhanced the reliability of the results.

4.4.3. Quantification of uncertainty sources
According to the conclusion of Section 4.4.2, the first three KFS were

selected in the uncertainty identification and qualified by the envelope-
probability method. The distribution type and the range of the parame-
ters are shown in Table 7.

For example, the possible values of solder joint thermal fatigue
parameters are listed in Table 8 classified by different distribution
types.

Simplifying the equation of the solder joint thermal fatigue, we have
the following [16]:

Nf ¼
1
2

0:7185� LD
2

ε f � h

" #−2:27

: ð12Þ

The envelope-probability area of each KFS is shown in Fig. 6.
According to Eq. (12), in combinationwith the values in Table 4,Area

B is 255.1661, which is shown in Fig. 7.
Then using each set of Table 8 as the value of εf to cut the envelope-

probability area, the Area T1, Area T2, and Area T3 can be painted as
Fig. 8.
bility area of each KFS.



Fig. 7. The total envelope-probability area.

1389B. Sun et al. / Microelectronics Reliability 55 (2015) 1384–1390
According to Eq. (11), Δs1 = 56.9 %, Δs2 = 35.7 %, and Δs2 = 52.2 %,
when the Δsi is smaller than others, the impact of the εf fluctuation is
greater and thus, εf ~ [0.28, 0.25]. The quantification results of the rest
KFS are shown in Table 9.

4.4.4. Sensitivity analysis used in the quantification of uncertainty sources
Calculating the results of electronic prognostic uncertainty

quantification.
It can be seen from Fig. 9:

1) The mean of the uncertainty quantification that used the envelope-
probability based sensitivity analysis is 1367, and the variance is
312. Both themean and the variance of currentmethodwere smaller
than those resulted in Section 4.4.2. It indicates that the sensitivity
analysis in the quantification of uncertainty sources can improve
the accuracy of uncertainty quantification.
Fig. 8. The results of the envel
2) If the sensitivity of a KFS to results is higher than others, the distribu-
tion parameters of it will affect the outputs more greatly.
5. Conclusion

In this paper, the sensitivity analysis was conducted in the inputs of
uncertainty quantification. First of all, the EFAST-based sensitivity
method was utilized in KFS identification. The result of the EFAST-
based method showed that it improved the accuracy and stability
of the uncertainty quantification. This paper also tried to propose a
method about how to choose the number of KFS. The keywas to control
the variance and meanwhile adhere to the simulation result. Secondly,
the envelope probability-based sensitivity method was used in
the KFS quantification. The result of the envelope-probability-based
method showed that it further improved the accuracy and stability of
ope-probability area cut.



Table 9
The results of the qualification of the KFS.

Parameters Range of the parameters

εf u = 0.28 σ2 = 0.25
ECu u = 1350 σ2 = 450
d u = 0.7 σ2 = 0.6
LD Lb = 0.62 Ub = 0.72
t Lb = 0.15 Ub = 0.35
l Lb = 0.5 Ub = 0.8
W Lb = 0.05 Ub = 0.12
h Lb = 0.5 M = 0.7 Ub = 1.0
j Lb = 2.8 M = 3.2 Ub = 3.5

Fig. 9. The results of the envelope-probability based method.
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the uncertainty quantification. Finally, this paper still has much room
for further improvement. In the process of KFS identification, the scale
of theweightingparameters can be set to 0.1 or even smaller. In thepro-
cess of KFS quantification, the range of possible values can be divided
into 10 groups. Such changes were more likely to further improve the
accuracy and stability of the uncertainty quantification. However, it
cost more calculation time than before. Therefore, how to balance
time and accuracy can be further studied in the future.
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